Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 21(1): 52, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594727

RESUMO

BACKGROUND: Unsupervised robot-assisted rehabilitation is a promising approach to increase the dose of therapy after stroke, which may help promote sensorimotor recovery without requiring significant additional resources and manpower. However, the unsupervised use of robotic technologies is not yet a standard, as rehabilitation robots often show low usability or are considered unsafe to be used by patients independently. In this paper we explore the feasibility of unsupervised therapy with an upper limb rehabilitation robot in a clinical setting, evaluate the effect on the overall therapy dose, and assess user experience during unsupervised use of the robot and its usability. METHODS: Subacute stroke patients underwent a four-week protocol composed of daily 45 min-sessions of robot-assisted therapy. The first week consisted of supervised therapy, where a therapist explained how to interact with the device. The second week was minimally supervised, i.e., the therapist was present but intervened only if needed. After this phase, if participants learnt how to use the device, they proceeded to two weeks of fully unsupervised training. Feasibility, dose of robot-assisted therapy achieved during unsupervised use, user experience, and usability of the device were evaluated. Questionnaires to evaluate usability and user experience were performed after the minimally supervised week and at the end of the study, to evaluate the impact of therapists' absence. RESULTS: Unsupervised robot-assisted therapy was found to be feasible, as 12 out of the 13 recruited participants could progress to unsupervised training. During the two weeks of unsupervised therapy participants on average performed an additional 360 min of robot-assisted rehabilitation. Participants were satisfied with the device usability (mean System Usability Scale scores > 79), and no adverse events or device deficiencies occurred. CONCLUSIONS: We demonstrated that unsupervised robot-assisted therapy in a clinical setting with an actuated device for the upper limb was feasible and can lead to a meaningful increase in therapy dose. These results support the application of unsupervised robot-assisted therapy as a complement to usual care in clinical settings and pave the way to its application in home settings. TRIAL REGISTRATION: Registered on 13.05.2020 on clinicaltrials.gov (NCT04388891).


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Terapia por Exercício/métodos , Estudos de Viabilidade , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
2.
JMIR Res Protoc ; 12: e48485, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943580

RESUMO

BACKGROUND: Increasing the dose of therapy delivered to patients with stroke may improve functional outcomes and quality of life. Unsupervised technology-assisted rehabilitation is a promising way to increase the dose of therapy without dramatically increasing the burden on the health care system. Despite the many existing technologies for unsupervised rehabilitation, active rehabilitation robots have rarely been tested in a fully unsupervised way. Furthermore, the outcomes of unsupervised technology-assisted therapy (eg, feasibility, acceptance, and increase in therapy dose) vary widely. This might be due to the use of different technologies as well as to the broad range of methods applied to teach the patients how to independently train with a technology. OBJECTIVE: This paper describes the study design of a clinical study investigating the feasibility of unsupervised therapy with an active robot and of a systematic approach for the progressive transition from supervised to unsupervised use of a rehabilitation technology in a clinical setting. The effect of unsupervised therapy on achievable therapy dose, user experience in this therapy setting, and the usability of the rehabilitation technology are also evaluated. METHODS: Participants of the clinical study are inpatients of a rehabilitation clinic with subacute stroke undergoing a 4-week intervention where they train with a hand rehabilitation robot. The first week of the intervention is supervised by a therapist, who teaches participants how to interact and train with the device. The second week consists of minimally supervised therapy, where the therapist is present but intervenes only if needed as participants exercise with the device. If the participants properly learn how to train with the device, they proceed to the unsupervised phase and train without any supervision during the third and fourth weeks. Throughout the duration of the study, data on feasibility and therapy dose (ie, duration and repetitions) are collected. Usability and user experience are evaluated at the end of the second (ie, minimally supervised) and fourth (ie, unsupervised) weeks, allowing us to investigate the effect of therapist absence. RESULTS: As of April 2023, 13 patients were recruited and completed the protocol, with no reported adverse events. CONCLUSIONS: This study will inform on the feasibility of fully unsupervised rehabilitation with an active rehabilitation robot in a clinical setting and its effect on therapy dose. Furthermore, if successful, the proposed systematic approach for a progressive transition from supervised to unsupervised technology-assisted rehabilitation could serve as a benchmark to allow for easier comparisons between different technologies. This approach could also be extended to the application of such technologies in the home environment, as the supervised and minimally supervised sessions could be performed in the clinic, followed by unsupervised therapy at home after discharge. TRIAL REGISTRATION: ClinicalTrials.gov NCT04388891; https://clinicaltrials.gov/study/NCT04388891. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48485.

3.
Front Robot AI ; 10: 1093124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814447

RESUMO

Introduction: Robot-assisted neurorehabilitation is becoming an established method to complement conventional therapy after stroke and provide intensive therapy regimes in unsupervised settings (e.g., home rehabilitation). Intensive therapies may temporarily contribute to increasing muscle tone and spasticity, especially in stroke patients presenting tone alterations. If sustained without supervision, such an increase in muscle tone could have negative effects (e.g., functional disability, pain). We propose an online perturbation-based method that monitors finger muscle tone during unsupervised robot-assisted hand therapy exercises. Methods: We used the ReHandyBot, a novel 2 degrees of freedom (DOF) haptic device to perform robot-assisted therapy exercises training hand grasping (i.e., flexion-extension of the fingers) and forearm pronosupination. The tone estimation method consisted of fast (150 ms) and slow (250 ms) 20 mm ramp-and-hold perturbations on the grasping DOF, which were applied during the exercises to stretch the finger flexors. The perturbation-induced peak force at the finger pads was used to compute tone. In this work, we evaluated the method performance in a stiffness identification experiment with springs (0.97 and 1.57 N/mm), which simulated the stiffness of a human hand, and in a pilot study with subjects with increased muscle tone after stroke and unimpaired, which performed one active sensorimotor exercise embedding the tone monitoring method. Results: The method accurately estimates forces with root mean square percentage errors of 3.8% and 11.3% for the soft and stiff spring, respectively. In the pilot study, six chronic ischemic stroke patients [141.8 (56.7) months after stroke, 64.3 (9.5) years old, expressed as mean (std)] and ten unimpaired subjects [59.9 (6.1) years old] were tested without adverse events. The average reaction force at the level of the fingertip during slow and fast perturbations in the exercise were respectively 10.7 (5.6) N and 13.7 (5.6) N for the patients and 5.8 (4.2) N and 6.8 (5.1) N for the unimpaired subjects. Discussion: The proposed method estimates reaction forces of physical springs accurately, and captures online increased reaction forces in persons with stroke compared to unimpaired subjects within unsupervised human-robot interactions. In the future, the identified range of muscle tone increase after stroke could be used to customize therapy for each subject and maintain safety during intensive robot-assisted rehabilitation.

4.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176083

RESUMO

Growing evidence shows that increasing the dose of upper limb therapy after stroke might improve functional outcomes and unsupervised robot-assisted therapy may be a solution to achieve such an increase without adding workload on therapists. However, most of existing robotic devices still need frequent supervision by trained personnel and are currently not designed or ready for unsupervised use. One reason for this is that most rehabilitation devices are not capable of delivering and adapting personalized therapy without external intervention. Here we present a set of clinically-inspired algorithms that automatically adapt therapy parameters in a personalized way and guide the course of robot-assisted therapy sessions. We implemented these algorithms on a robotic device for hand rehabilitation and tested them in a pilot study with 5 subacute stroke subjects over 10 robot-assisted therapy sessions, some of which unsupervised. Results show that our algorithms could adapt the therapy difficulty throughout the whole study without requiring external intervention, maintaining performance around a predefined 70% target value (mean performance for all the subjects over all the sessions: 64.5%). Moreover, the algorithms could guide patients through the therapy sessions, minimizing the number of actions that subjects had to learn and perform. These results open the door to the use of robotic devices in an unsupervised setting to increase therapy dose after stroke.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Projetos Piloto , Recuperação de Função Fisiológica , Extremidade Superior
5.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176118

RESUMO

Following stroke, a significant portion of individuals suffer from upper limb impairments and struggle with activities of daily living. Dedicated assistive technology (AT), such as robotic hand orthoses (RHO), can help facilitate upper limb usage and allow users to regain independence in their daily lives. Often, users' needs and requirements are neglected in AT design, thereby contributing to poor technology acceptance. In this work, we propose and apply a mixed-method focus group combining qualitative and quantitative components to gather user expectations in view of a user-centred redesign of a RHO. Three main themes emerged from a thematic analysis of two focus groups (n=5): Experience after stroke, desired design features, and reflections and realisations. Participants listed device features they would look for in AT and ranked them relative to what they deem important and necessary for a satisfactory device. Participants primarily looked for AT that is effective, intuitive and easy to use. These insights complement traditional technical design requirements for RHO by considering user desires, aspects unfortunately often neglected in the early design process. This work provides guidelines allowing for the optimization of AT design to better match the needs of persons after stroke and improve technology acceptance.


Assuntos
Tecnologia Assistiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Atividades Cotidianas , Humanos , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...